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Abstract 

The electron-density distribution (EDD) of metallic 
beryllium has been derived from the structure factors of 
Larsen & Hansen [(1984). Acta Cryst. B40, 169-179] 
using the maximum entropy method (MEM). Subsequent 
topological analysis reveals non-nuclear maxima (NNM) 
in the EDD. Plots of the gradient field of the electron 
density illustrates this finding. A possible critical-point 
network for the hexagonal close-packed (h.c.p.) structure 
of beryllium is suggested. It is thus demonstrated that 
it is possible to obtain detailed topological information 
about the electron density in metallic beryllium without 
the use of a structural model. In order to test the findings 
of the MEM, the same set of structure factors were 
analysed using the multipole refinement method (MRM). 
Use of the MRM also reveals NNM. The results of the 
two different approaches to electron-density analysis 
are contrasted and discussed. Expressed within the 
framework of the theory of atoms in molecules, our 
results suggest that the h.c.p, structure of beryllium has 
no Be atoms directly bonded to other Be atoms. The 
structure is held together through a three-dimensional 
network of bonds between the NNM and Be atoms as 
well as between different NNM. The topological analysis 
thus reveals that the beryllium structure has important 
interactions connecting Be atoms of different basal plane 
layers. The breaking of these interactions when forming 
a surface may explain the abnormally large expansion of 
the inter-layer distance in the beryllium surface structure. 

Introduction 

Numerous theoretical calculations by varying techniques 
have derived the electron-density distribution (EDD) of 
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different metals and these have been compared with 
state-of-the art experimental determinations. Theoretical 
reports have shown (Cao, Gatti, Macdougall & Bader, 
1987; Edgecombe, Smith & Muller-Plathe, 1993) that 
non-nuclear maxima may exist in simple metals. This 
is a most interesting result because a dominant feature 
in molecular electron-density distributions is that they 
exhibit maxima only at the nuclear positions (Bader, 
1991). 

From cluster calculations on lithium and sodium, 
Cao, Gatti, Macdougall & Bader (1987) found that the 
alkali metals consist of positively charged metal ions 
immersed in and bound through an inter-meshed network 
of negative charge concentrations, so called non-nuclear 
attractors or non-nuclear maxima (the NNM). Later 
Edgecombe, Smith & Muller-Plathe (1993) have shown 
that the NNM in sodium were artifacts of the basis set 
used in the calculation, but that the NNM in lithium were 
persistent. The NNM consist of loosely bound and quite 
delocalized electronic charge and so must be important 
for the metallic conducting properties. It is thus of 
interest to characterize further the possible NNM in 
metals. Beryllium is most suitable for performing high- 
resolution X-ray diffraction experiments. The crystal 
data for beryllium are: space group P63/mmc, Z = 
2, a = 2.2853 (3), c = 3.5842(2)A at T = 293K. 
Because of its low atomic number and the availabil- 
ity of high-quality crystals, minimal systematic errors 
are encountered in the data collection. For this reason 
beryllium was chosen as a test for checking whether the 
theoretical findings may be a more general feature of 
metallic systems. Earlier experimental work on metal- 
lic beryllium by Larsen & Hansen (1984) has shown 
an accumulation of charge in the bipyramidal space 
of tetrahedral holes in the h.c.p, structure. That work 
was a combined X-ray, neutron and "),-ray diffraction 
experiment. Using Fourier summation techniques Larsen 
and Hansen found a surplus of 0.013 (2) electrons in 
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the bipyramidal space relative to a free atom model. 
Theoretical ab initio LCAO calculations by Dovesi, 
Pisani, Ricca & Roetti (1982) also suggested a NNM 
at the midpoint of the bipyramidal space of tetrahe- 
dral holes. Chou, Lam & Cohen (1983) performed 
ab initio local density functional calculations. Their 
calculations indicated small NNM but in another position 
than found by Dovesi, Pisani, Ricca & Roetti (1982). 
Ab initio Hartree-Fock-Rothan cluster calculations by 
Ross, Ermler, Kern & Pitzler (1992) also indicate the 
existence of NNM. Very recently, Holzwarth & Zeng 
(1994) performed local density functional calculations 
which show a peak at the midpoint of the bipyramidal 
space both in the valence charge density and in the 
deformation density. 

In the present paper we report a topological analysis 
of the experimental charge density of beryllium derived 
using the structure factors of Larsen & Hansen (1984) 
by both the maximum entropy method (MEM) (Collins, 
1982; Sakata & Sato, 1990) and the multipole refinement 
method (MRM) (Stewart, 1976; Hansen & Coppens, 
1978). The derived electron densities were analysed 
using the FORTRAN program CPGRID for the MEM 
case and the program P O T L A P D E N S  in the MRM case 
(Souhassou, 1993). The results obtained with the two 
different methods are contrasted and virtues as well as 
drawbacks of the methods are discussed. 

The maximum entropy method 

The strong point of the MEM used for data analysis is 
that it uses the full Bayes' equation (1) and introduces 
the prior probability distribution in the inference of the 
EDD (Skilling, 1991; Smith & Erickson, 1989). 

P(model/data) = P(data/model) × P(model)/P(data) (1) 

In this expression P(data/model) is the likelihood 
function. If the error distribution is known around each 
data point the likelihood function is a computable dis- 
tribution. Conventional least-squares refinement corre- 
sponds in the case of Gaussian error distributions to 
maximizing the likelihood function. However, the likeli- 
hood function is not equal to P(model/data), the posterior 
distribution, which is the distribution we want to know. 
From Bayes' equation, (1), it can be seen that least- 
squares analysis corresponds to the omission of the 
factor P(model)/P(Data).  P(Data) can be taken as a 
constant but P(model), the prior probability distribution, 
in general cannot. The prior probability distribution is of 
little consequence when we are dealing with good and 
abundant data, but it is an important factor when dealing 
with limited or poor data sets. In a diffraction experiment 
the number of structure factors measurable is eventually 
limited by the maximum length of the scattering vector 
(47r/A). In practice the upper limit is considerably lower. 
In experimental electron-density analysis one tries to 

extrapolate the resolution of the EDD to infinity from 
this limited number of structure factors. This is an under- 
determined system and therefore an infinity of different 
EDD's will have identical misfit statistics. In this case it 
is important to include the prior probability distribution 
in the inference of the density. It has been shown that for 
positive and additive distributions the prior distribution 
takes on an entropic functional form (Skilling, 1989). 
The most unbiased inference one can make is, therefore, 
to choose the density that maximizes the entropy and at 
the same time fulfils the constraint of the data. 

The maximum entropy method can be introduced in 
electron-density determination by an iteration procedure. 
The unit cell is divided into a number of pixels. Within 
the approximations suggested by Collins (1982) and 
Sakata & Sato (1990) the normalized density Px, in pixel 
number x, can be calculated in an iterative manner from 
the normalized density in the previous cycle, 7-x, by the 
expression 

px = exp{ lnTx + FoA/NE[(F~ - F~t)/a~]exp(-27riHx) }. 
(2) 

In this formula F0 is the number of electrons in the 
unit cell and A is a Lagrangian multiplier. F~ are the 
experimentally observed structure factors and F~ the 
calculated structure factors obtained as the Fourier sum- 
mation of the unit-cell density. Tx is a prior distribution 
which may contain our information about the system 
before performing the experiment. In the procedure used 
so far the iterations are stopped when the constraint Cl = 
1/NEIF ° - FCl2/a 2 has converged to a value of 1. N 
is the number of structure factors used in the analysis. 
This expected value of the constraint is based on the 
assumption that we can assign correct standard devia- 
tions to our experimentally measured structure factors. 
Gull (1989) has pointed out that this may not be the 
best way to solve the problem. 

In the formalism above a prior distribution Tx is intro- 
duced. The optimization procedure is dependent on the 
particular choice of this distribution. The straightforward 
possibility for introduction of all the prior knowledge 
one may have about the system being studied is a 
virtue of the MEM. The prior distribution allows us 
to incorporate information from earlier experiments or 
other sources. The optimization minimizes the cross 
entropy with respect to the prior model while fitting the 
data (Kapur & Kesavan, 1992). If we do not measure 
new data that contradict our prior knowledge then the re- 
sulting distribution will be the prior distribution. There is 
a conceptual difference between maximizing the entropy, 
pilnpi, under the constraints of the data (MaxEnt) and 
minimizing the cross entropy with respect to a prior 
distribution under the constraints of the data (MinXEnt) 
(Kapur & Kesavan, 1992). In the former case one wishes 
to maximize the entropy (uncertainty) of the distribution 
and thus make the most unbiased inference about the 
posterior distribution. In the latter case the basic concept 



582 CONFERENCE PROCEEDINGS 

is minimization of the distance to the prior distribution. 
If a uniform prior distribution is chosen in MinXEnt then 
the two approaches are identical. 

The multipole refinement method 

In normal crystallographic work a model is suggested 
and the description of the EDD is parameterized and 
refined in a least-squares procedure minimizing the quan- 
tity r ~ w ( l F f t  - kF~12), where w = 1/cr2(F~) and k is a 
scale factor. In most applications atom-centred model 
functions are used. In the model proposed by Hansen 
& Coppens (1978) the Fourier transform of the sum of 
atomic density contributions (3) is fitted to the observed 
structure factors 

Patom = Pcore(r)Pcore + Pval(r)t~3 pval(~r) 

l m a x  l 

+ ~ ~'3Rl(~'r) ~ Ptm+_-dtm+_(O,qo). (3) 
/ = 0  r n = 0  

The use of nuclear centred model functions may 
conceivably have problems in describing very weak non- 
nuclear maxima. This is because the particular choice of 
model used in the least-squares fit inevitably will bias the 
resulting EDD. Differentiation between models that have 
the same residual is based either on chemical intuition 
or comparison with other experimental or theoretical 
results. A great amount of work has been devoted to 
finding out what type of functions give the physically 
most sensible EDD's after a least-squares refinement. In 
recent years it has become evident that also the shape of 
the radial functions used in the least-squares procedure 
can have a great influence on the final result (Figgis, 
Iversen, Larsen & Reynolds, 1993). Even though such 
bias is unsatisfactory, a great virtue of the method is 
that the electron density is parametrized into analytical 
functions. For molecular crystals this is generally carried 
out with great efficiency. The parametrization makes 
further analysis more convenient and allows physical 
properties to be calculated and compared with results of 
other experiments or calculations. (e.g. d-orbital popula- 
tions, electrostatic properties etc.). However, the choice 
of model is not always obvious and it is very often seen 
that the parameters found in a least-squares analysis are 
highly correlated and therefore their individual numerical 
values are of little use. The theory of atoms in molecules 
(Bader, 1991) has provided experimental EDD analysis 
with a framework in which representations of the total 
EDD can also be analysed in a rewarding manner. A 
complication when performing a multipole analysis of 
metallic beryllium is that the EDD of a metal is very 
delocalized and therefore a very flexible model may be 
needed to describe the density. Extra flexibility can be 
obtained by using higher than fourth-order multipoles, 
which has been tried by Stewart (1977). However, a 
satisfactory model was obtained within the limitations 
of fourth-order multipoles. 

A final point in favour of the MRM is that within the 
convolution approximation it gives parameters describ- 
ing a static electron density. This is in contrast to the 
MEM which in the present form obtains the thermally 
smeared EDD. Static electron-density distributions can 
be directly compared to theoretically derived distribu- 
tions, whereas thermally smeared distributions cannot. 

Topological analysis of charge densities 

Topological analysis of electron densities has been 
extensively presented in the literature, see for instance 
the book by Bader (1991). Critical points in the density 
have Vp = 0 and they can in Bader's scheme be classified 
in terms of the properties of the eigenvalues of the 
Hessian matrix (second derivatives) at the critical point. 
The critical points are characterized by (rank, signature), 
where rank is the number of non-zero eigenvalues and 
signature is the algebraic sum of their signs. Atomic 
entities in the density are (3,-3) points (also called 
peaks) and chemical bonds are (3,-1) points (passes). 
(3,1) and (3,3) points defines the two other structural 
units namely rings (pales) and cages (pits). The names 
in parenthesis were introduced by Johnson (1992). 
A very important theorem in the theory of atom in 
molecules connects the Laplacian of the density with 
the energy densities, 16mTr2V2p(r) = 2G(r) + V(r). G(r) 
is the kinetic energy density and V(r) is the potential 
energy density. On this basis, different bonds can be 
characterized depending on the sign of the Laplacian at 
the bond critical point. Closed-shell interactions have 
positive Laplacians (hydrogen bonds, van der Waal 
bonds etc.), whereas shared interactions have negative 
Laplacians (covalent bond). The r-character as well as 
the stability of a bond can be described by the ellipticity 
of the bond, e = AI /A2-  1, where AI and A2 are the 
negative eigenvalues of the Hessian matrix at the bond 
critical point. 

In recent years several reports (Stewart, 1991) have 
shown that valuable physical and chemical information 
can be obtained from topological methods applied to 
experimentally derived EDD's. Consequently there is a 
strong need to construct the optimum density based on 
the available information. When carrying out a topo- 
logical analysis on an EDD one looks for not only the 
coarse features (the atomic maxima), but all the critical 
points in the structure. As will be shown two EDD's 
can have almost identical misfit statistics but still be 
different. Thus, it may be difficult in experimental EDD 
analysis to decide unambiguously which critical points 
are correct. 

Calculations 

The MEM formalism sketched above has been imple- 
mented in the program M E E D  from Nagoya University 
(Kumazawa, Kubota, Takata, Sakata & Ishibashi, 1993). 
In the present analysis 58 structure factors with sin0/A < 
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1.21 A -I measured by Larsen & Hansen (1984) were 
used. The MEM density was calculated on a 120 × 
120 × 120 pixel grid (0.038 x 0.038 x 0.06A) for 
the final results. Exploratory calculations were done on 
a 60 × 60 × 60 pixel grid. Major topological features 
did not depend on the number of grid points indicat- 
ing that the grid was chosen with adequate resolution. 
Initial calculations were started from a fiat uniform 
distribution constrained to eight electrons in the unit 
cell. The Lagrangian multiplier was chosen small to 
ensure convergence. Iterations were stopped when the 
constraint C1 had converged to a value of 1. This final 

(a) 

C 

11101 

(b) 
Fig. I. Contour plots of the MEM electron-density distribution of 

beryllium based on X-ray single-crystal room-temperature diffraction 
data. (a) shows the basal plane of the h.c.p, structure. The full 
hexagonal surrounding of one Be atom is displayed. One unit cell 
is outlined. (b) shows the (110) section. More than one unit cell is 
shown in order to bring out clearly the ABAB stacking along the 
c axis. The maximum density at the atomic position is 48.10 e ~-3. 
However, the contour plotting was truncated at 0.5 e ~-3. Emphasis 
is put on the lower density regions of the unit cell by only plotting on 
a linear scale from 0.0 to 0.5 e A -3 with intervals of 0.025 e ,~-3. The 
density at special position d, +, is a local maximum of 0.41 e A -3, 
that of special position b, *, is a local minimum of 0.14 e A -3 . 

density gave a residual factor, R = EIFn ° - Fffl2/EIF~I 2 = 
0.006. In Figs. l(a) and 1 (b) the resulting MEM electron 
density distribution in the basal plane (001) and in the 
(110) plane is shown. The contour lines are drawn in 
linear scale and only in the lower density region in 
order to better show the modulation of the EDD in the 
interatomic region. No absolute stopping criteria for the 
iterations exist in the present formalism. Densities were 
also calculated with constraint values, Cl, of 10, 5, 2, 
0.75, 0.5, 0.25, 0.1 and 0.001, and the stability of the 
features in the maps was confirmed. 

In many applications a uniform density is used as 
prior model. This assumes that we do not know anything 
about the distribution a priori (other than positivity and 
the total number of electrons). We only make use of the 
data at hand. We also tried another choice of "rx, namely 
the density corresponding to two thermally smeared Be 
atoms placed at their known position in the unit cell. 
The rationale behind this distribution is that we make no 
assumptions of the nature of chemical interactions taking 
place when forming the crystal. We only assume that 
matter is made of atoms organized in a h.c.p, lattice. The 
non-uniform prior distribution of thermally smeared Be 
atoms was calculated in two steps. A static distribution 
was obtained using wavefunctions from Clementi & 
Roetti (1974), and it was calculated and discretized 
using a modified version of the program SALLY (Hansen, 
1993). The thermally smeared distribution was obtained 
by a discrete Fourier transformation of the static density 
followed by multiplication with a temperature factor 
obtained in a neutron diffraction study by Larsen, Brown, 
Lehman & Merisalo (1982), see Appendix. The thermally 
smeared structure factors were then transformed back to 
direct space. To avoid effects of termination ripples that 
create negative density regions unsuitable for the MEM 
procedure, levelling of the density in the interatomic 
regions was introduced. Any pixel with a value lower 
than 0.2 e/~-3 was given a value of 0.2 e/~-3. The cell 
was then renormalized to eight electrons, resulting in 
values of 74.36 e/~, -3 at the beryllium position and 
0.15 e ,~-3 in the flat background region. 

Earlier experiences with the present algorithm have 
shown that inclusion of many high-order reflections 
can lead t0 maps containing 'ghost'  features that are 
physically unreasonable. This has been explained as an 
effect of inferior quality of the high-order reflections 
because of, for instance, uncertainty in the corrections for 
thermal diffuse scattering (Takata, Sakata, Kumazawa, 
Larsen & Iversen, 1994). Another problem with the 
present procedure is the observation that the distribution 
of residual structure factors, F ° - F~, can be very non- 
uniform. The error after the optimization is sometimes 
carried by a few low-order reflections (Jauch & Palmer, 
1993). de Vries, Briels & Feil (1993) have proposed a 
weighting scheme that leads to more uniform residual 
distributions as well as improved EDD's. Therefore, 
we introduced a weighting scheme based on standard 



584 CONFERENCE PROCEEDINGS 

Table 1. The critical-point network of the beryllium h.c.p, structure, as found from topological analysis of the MEM 
density calculated from a uniform prior and stopping at Ci = 1 

Table entries are: the unit-cell posit ions in fractional coordinates (x,y,z), special position in space group No. 194 P63/mmc (pos), multiplicity of  the 
special position (mult), electron density at the critical point in e ,~-3 (p), Laplacian o f  the density at the critical point in e ,~-5 (V2p), eigenvalues o f  
the Hessian matrix at the critical point (2~, 22, ;t3), ellipticity o f  the bond (e) and distance to nearest gradient path attractors (R t ,R2). 

( 3 , - 3 )  ( 3 , - 3 )  ( 3 , - 1 )  ( 3 , - 1 )  ( 3 , -  1) ( 3 , - 1 )  (3,1) (3,1) (3,1) (3,3) 
N N M  I N N M 2  B O N D  1 B O N D 2  BOND3 B O N D 4  RING 1 R I N G 2  RING3 C A G E  

x 2/3 0 0.507 1/3 0.093 0.144 0 0.075 0.107 0 
y I/3 0 1.013 2/3 0.046 0.288 I/2 0.149 0.554 0 
z I/4 0 1/4 0.054 0.042 0.110 0 0.069 0.094 1/4 
pos d a h f k k g k k b 
muir 2 2 6 4 12 12 6 12 12 2 
p 0.408 0.223 0.326 0.275 0.220 0.226 0.264 0.2 ! 3 0.243 0.143 
V2p -2.25 -0 .99 0.68 1.95 -0.83 -0 .20 -0.30 0.26 3.71 3.30 
~ - 1.64 -0.69 - 1.50 - 1.32 -0.52 -0 .60 -0.95 -0.31 -0.54 0.54 
22 -0.49 --0.21 - 1.42 --0.40 -0.47 -0.48 O. ! 8 O. 13 ! .80 0.96 
23 -0.13 -0.09 3.61 3.67 0.16 0.88 0.47 0.44 2.45 1.80 
e 0.05 2.35 0.10 0.24 
Ri 0.69 0.70 1.36 0.90 

Be Be NNM 1 Be 
R2 0.63 1.09 0.24 0.69 

NNM I NNM 1 NNM2 NNM2 

deviations which were modified by multiplication with 
the square of the length of the scattering vector of the 
reflection. As will be shown this leads to more uniform 
residual distributions and it also proved essential in order 
to obtain reasonable maps from the non-uniform prior 
distribution. 

Because MEED calculates the density on a grid it is 
necessary to employ an interpolation routine to obtain 
the density at every point in the unit cell which is 
needed in the calculation of the topological features. 
We have employed the Gregory-Newton interpolation 
scheme (Wylie, 1960). Interpolation in the grid-point 
experimental density sometimes results in either obscure 
critical points or the routine will not locate all symmetry 
equivalent critical points in the cell. The critical points 
presented in this paper are those that were of stable 
nature and persisted over a range of values for the 
constraint Cl (10 to 0.1). Furthermore, the gradient 
refined to a value of less than 10 -4 for these points. 
The procedures have been implemented in a FORTRAN 
program CPGRID (Souhassou, 1993). 

Results of the MEM analysis 

The critical-point network of the h.c.p, structure 
Beryllium has the h.c.p, structure. The critical-point 

network of the h.c.p, structure was examined by Johnson 
(1992) using Morse theory. A set of equations sums up 
properties of the number of critical points in a crystal, 
N(rank, signature). 

(i) N(3,3) > 1; 
(ii) N(3,1) -N(3 ,3 )  > 0; 
(iii) N(3,-1) - N(3,1) + N(3,3) > 1; 
(iv) N(3,-3) + N(3,1) = N(3,-1) + N(3,3). 
In the case of the h.c.p, structure Johnson was un- 

able to establish a fully attractive network of critical 
points based solely on Morse theory. He concluded 

that experimental examination of the critical points is a 
must to further develop the h.c.p, network. The network 
he established contradicts experimental observations in 
one essential way. Special position d of the space 
group P63/mmc (the centre of the bipyramidal space) 
is given as a local minimum, which seems an unlikely 
suggestion since theoretical and experimental studies of 
the beryllium structure indicate a charge build up in that 
area. 

Our topological analysis revealed many critical points 
of all kinds due to the high symmetry of the structure. 
The number, type and position of the critical points 
was slightly dependent on the stopping criteria for the 
iterations and on the prior density. In order to establish 
the critical-point network of the structure with more 
certainty we examined densities using a number of 
constraint values, Cl= 10 , 5, 2, 1, 0.75, 0.5, 0.25, 
0.1 and 0.001. Table 1 shows only points that were 
predominantly present in all maps from C1 = 10 down 
to C1 = 0.1. The values listed in Table 1 refer to the map 
with CI = 1 obtained from a uniform prior distribution. 

The dominant interactions in the structure can be 
illustrated by maps of the gradient paths of the EDD. 
Fig. 2(a) shows the (001) plane and Fig. 2(b) the (110) 
plane. 48 gradient paths are traced backwards from each 
(3,-3) point. The calculations of the gradient paths are 
stopped if one of the following criteria are not satisfied: 
(1) p > 10 -3, (2) Vp > 10 -7, (3) the gradient path 
is more than 0.4 A, from the plotting plane, (4) the 
gradient path changes its direction by more than 90 ° 
between two steps (0.025 A). Due to criterion (3) many 
gradient paths vanish close to the NNM and due to 
the finite number of gradient p~ths, regions of very fiat 
density appear as extensive white areas on the maps. 
Fig. 2(a), the (001) plane, shows two gradient path 
attractors, namely the Be atom and one at the non- 
nuclear maximum at the centre of the bipyramidal space. 
Gradient paths radiate from the point of coordinates (0,0) 
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in the basal plane. These three points can be seen as 
well in Fig. 2(b), the (110) plane, which also shows yet 
another gradient path attractor at (0,0,0), special position 
a. The present MEED algorithm calculates the density on 
a grid. This is computationally heavy and leads to several 
numerical difficulties when the topological features are 
subsequently calculated and plotted. It is difficult at this 
stage to know which critical points are significant. We 
are dealing with experimental data and error analysis in 
the MEM is not developed. We firmly believe, based 
on prior experimental (Larsen & Hansen, 1984) and 
theoretical (Holzwarth & Zeng, 1994) evidence that the 
non-nuclear maximum, NNM1 in special position d, the 
centre of two adjacent tetrahedral holes in the h.c.p. 
structure, is correct. If this is accepted we should find, 
according to Bader's (1991) theory, bond critical points 
between the NNM1 and Be. The CPGRID program 
locates two-bond critical points, BOND 1 in, and BOND2 
between basal planes, and the gradient plots, Fig. 2, 
support the view that these two-bond critical points 
between beryllium and NNM1 are not artifacts of the 
critical-point search on a grid. 

a 

(a) 

[ll0l 
(b) 

Fig. 2. Gradient paths of the electron-density distribution obtained with 
the MEM. (a) and (b) are the (001) and (110) planes, respectively. 

The bonds between beryllium and NNM1 outline 
drum-shaped figures within the h.c.p, structure. The 
points located in turn demand the existence of ring criti- 
cal points within four-membered rings consisting of two 
Be atoms and two NNM1. Ring critical points, RING1, 
in fact are found in special position g, as shown in Table 
1. The Morse inequalities also demand at tt, ast one cage 
critical point. To obtain this we accept the second NNM2 
which is found in special position a, the octahedral hole 
of the h.c.p, structure. NNM2 is one of the most stable 
critical points even though this local maximum is found 
in the low-density region of the structure. Accepting 
NNM2 we then have the expected cage critical point, 
CAGE, in special position b. However, the presence of 
NNM2 demands more bond critical points. These are 
found with perfect octahedral symmetry around NNM2 
in special position k. There are two different kinds, 
one, BOND3, connecting NNM1 and NNM2, the other 
one, BOND4, connecting beryllium and NNM2. These 
bond paths create a huge number of rings. To fulfil the 
Morse equations at this stage we need another 24 ring 
critical points in the cell. This seems to be what we 
find, namely two different ring critical points, RING2 
and RING3, in special position k, although they do not 
fall exactly in the ring planes. The attractive thing about 
the network at this stage is that the Morse equations 
are fulfilled. The CPGRID program actually locates 
another three critical points in k special positions, two 
local minima and one local maximum. They are of 
low density. Accepting these would break the Morse 
equations and furthermore, the positions of these points 
are not obviously meaningful. A very essential critical 
point, namely NNM1, changed character as Ci was 
lowered. When reaching Ct = 0.5, this critical point 
splits up in two symmetrical critical points above and 
below the basal plane. These two new NNM have a 
(3,-1) bond critical point in between them at the basal 
plane position. This splitting of the basal plane NMM 
indicates that the data suggest a very fiat density in this 
region of the structure. Fig. 3 presents our suggestion 
of a possible network of critical points for the beryllium 
h.c.p, structure. 

The possibility for including prior knowledge about 
the system being studied is a strong point in the MEM. 
The introduction of a prior density consisting of two 
thermally smeared Be atoms proved to be less sat- 
isfactory than the uniform prior distribution, but still 
very informative. The starting constraint value with this 
distribution is C~ = 31 480 compared with 149 549 for 
the uniform distribution. With this prior distribution 
convergence is quickly reached, but the corresponding 
map is full of spurious features. The topological analysis 
revealed only few critical points at special positions. 
It seems that the MEED algorithm does not provide a 
physically meaningful answer if the thermally smeared 
atomic density is chosen as prior. Maybe the thermally 
smeared atomic prior introduces bias against moving 
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Table 2. Relative residuals, (F ° - Fc)/~_,(F ° - F ¢) in %, for  selected low-order reflections using different prior 
distributions and weighting schemes in the M E M  

The two first co lumns  show the M E M  results  ob ta ined  with a uni form pr ior  dis t r ibut ion and weights  1/0. 2, 1/(H20.) 2. The  fo l lowing  two co lumns  
show the results  ob ta ined  using a thermal ly  smeared  free a tom Be dis t r ibut ion  with 1/0. 2, 1/(H20.) 2 weights ,  respect ive ly .  

Uniform prior Uniform pr ior  Non-uniform prior Non-uniform prior 
h,k,l w = 1/o  .2 w = 1/(H20.) 2 w = 1/o  .2 w = 1/(H20.) 2 IF~I 
1,0,0 3.69 0.33 9.39 0.79 1.852 
0,0,2 8.09 0.4 i 0.77 2.92 3.371 
1,0,1 51.59 3.05 33.59 4.25 2.835 
1,0,2 4.91 2.28 2.61 0.32 1.483 
I, 1,0 4.34 9.29 14.01 15.86 2.687 
1,0.3 6.81 21.74 10.28 15.44 2.166 
2,0,0 1.78 1.89 2.15 0.64 1.197 
I,I ,2 9.72 29.07 12.36 17.45 2.352 
2,0.1 1.84 19.88 6.45 I I. 14 2.021 
0,0,4 2.08 2.13 3.98 2.09 2.232 
2,0,2 2.77 0.56 !. 19 3.36 1.051 
1,0,4 1.40 1.39 1.58 0.98 1.002 
2,0,3 0.30 1.45 0.47 0.86 1.561 
2, 1,0 0.06 I).30 0.05 0.22 0.869 
2,1,1 0.30 I. 12 0.44 1.20 1.459 
!, 1,4 0.06 0.65 0.15 0.96 i .617 
2, 1,2 0.03 0.12 0.02 0.05 0.768 
1,0,5 0.09 0.59 0.05 0.83 1.316 
E,4 0.336 0.338 0.405 0.407 - -  
R-factor 0.00592 0.(10594 0.00711 0.00715 - -  

density into the interatomic region compared with the 
uniform prior which is the least biased prior. Jauch 
& Palmer (1993) also examined the influence of non- 
uniform priors. They found the low-density regions to 
be strongly affected by the choice of prior, whereas 
the peaks were almost unaffected. In our case the high- 
density regions are also affected by the choice of prior. 
The peak value at the beryllium position at C~ = 1 
for the thermally smeared beryllium prior is 53.5 e A-3, 
compared with 48.1 e/~-3 for the uniform prior. This is 
a demonstration of the point stated earlier, namely that 

Fig. 3. Possible  cr i t ical-point  network for the beryl l ium h.c.p, structure 
obtained from the topological  analysis  o f  the MEM electron-densi ty  
distr ibution.  The non-nuclear  maxima  N N M  1 and NNM2 are marked 
1 and 2, respect ively.  The C A G E  point  is marked MIN.  

two distributions with almost identical misfit statistics 
can be quite different. 

Introduction of a weighting scheme changes the MEM 
maps considerably when the prior density consists of two 
thermally smeared Be atoms. Putting less weight on the 
high-order reflections allow the optimization procedure 
to assemble more charge in the valence regions and 
an increased charge build up is observed around the 
bipyramidal space of tetrahedral holes. Multiplication by 
H 2 on the standard deviations, H being the length of the 
scattering vector, clearly establishes the NNM1. With 
the H 2 weighting the NNM2 is not present as a (3,-3) 
but as a (3,-1) critical point. The overall tendency is for 
the maps to become much more symmetric, and ghost 
features disappear when putting extra weight on the low- 
order reflections. In the present context the important 
thing is that we can retrieve non-nuclear maxima in the 
EDD of metallic beryllium starting from priors 'from 
both sides' of the final map. This strongly supports their 
presence. We also introduced the same weighting of the 
reflections in calculations with the uniform prior. The 
resulting maps are very similar to those obtained without 
weighting. The charge build up in the bipyramidal region 
is still dominant and the overall features with two NNM 
interconnected with beryllium through (3,-1) critical 
points are still present after the weighting. 

Jauch & Palmer (1993) observed that the distribution 
of residual structure factors, F~ - F~, after a MEM 
procedure was quite non-uniform. Most of the error was 
carded by a few low-order reflections, whereas the high- 
order reflections are reproduced almost perfectly. Table 2 
shows relative errors in per cent for the low-order reflec- 
tions for different choices of prior distribution and weight- 
ing. As can be seen, introduction of the H 2 weighting 
scheme results in a more uniform scatter of the residuals. 
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Table 3. Final parameters and residuals for the multi- 
pole refinements 

Model 2 employs thermal parameters determined by least-squares 
refinement of neutron data (Larsen, Brown, Lehman & Merisalo, 1982) 
using a Gram-Charlier expansion to fourth order of  the harmonic 
displacement factor (see Appendix). The values in the table are related 
with the parameters in the temperature-factor expression, (4) by C jkl 
(Table 3) = C jkt x 4/3rr 3 x aj*ak*at* and IY ktm (Table 3) =/yktm x 
2/3n ~ x aj*ak*at*am*. 

Model 1 Model 2 
Scale 0.992 (4) 0.991 (2) 
U II (]k -2) 0.00599 (14) 0.(X)587" 
U33 (~-2) 0.00520 (14) 0.00536* 
C**~ (,~-3) 0.0015 (4) 0.00228* 
DIZlt (~-4) --0.00002 (31 ) -0.00011" 
03333 (~-4) --0.0002 (4) --0.00020* 
Dll33 (,~-4) --0.0(0)6 (62) 0.00069* 
P~x) 2.0 2.0 
P2o -0.0015 (54) -0.13 (10) 
P33+ 0.073 (37) 0.15 (7) 
P4o 0.013 (78) -0.14 (15) 
k' 0.862 (20) 0.846 (25) 
k" 1.0" 1.0" 
( 1.0" 1.0" 
R~. 0.0033 0.0061 
R~ r 0.0032 0.0069 
Rr 2 0.0081 0.0133 
R..f -2 0.0065 0.0137 
Gof 0.987 1.973 

, Not refined. 

Results of the MRM analysis 

To compare with the findings of the MEM, multi- 
pole refinements were carried out with the same set of 
structure factors using the program MOLLY (Hansen & 
Coppens, 1978), and subsequently the topology of the 
corresponding EDD was analysed. The atomic density 
was expanded to hexadecapole level. Be atoms have site 
symmetry 6m2 and, therefore, only three multipoles are 
allowed up to fourth order, namely P20, P33+ and P40. 
The topological analysis of the resulting static densi- 
ties was carried out with the program POTLAPDENS 
(Souhassou, 1993). The electron density calculated using 
the MRM is dependent on the model used to fit the 
data. A first model, model 1, contained atomic scattering 
functions centred at the beryllium position. The model 
also included Gram Charlier expansion parameters of 
the temperature factor T(H) (4), up to fourth order for 
describing the anharmonic vibrations of the beryllium 
nuclei. 

T(H) = (1 - 4iTr3/3cJkthjhkh! 

+27ra/3DJklmhjhkhthm) Tharmonic(H), (4 )  

with 

Tharmonic(H ) = e xp(-piJ hihj ). 

Even though metallic beryllium is an extremely hard 
material (Debye temperature = l150K), it has been 
shown (Larsen, Brown, Lehman & Merisalo, 1982; 
Takata, Sakata, Kumazawa, Larsen & Iversen, 1994) that 
even at room temperature significant third- and fourth- 
order contributions are present in the anharmonic motion 

of beryllium. We have adopted the axis definitions: 
[001] along the 6 axis, and [120] along the 2 axis. 
The following symmetry restrictions on the contravariant 
thermal parameters then apply (International Tables for 
Crystallography, 1974). 

Second order: pll  = p 2 2  = 2p12, p 3 3  

Third order: C I11 = - -C 222 ---- 2C 112 = _ 2 C I 2 2  

Fourth order: D I111 = D 2222 = 2D 1112 = 2 D  1222 = 

2DI I22 ,  D1133 = D 2233 = 2 D  1233, D 3333. 

All other thermal parameters are zero. Results from 
the least-squares refinement of model 1 are given in 
Table 3. 

Figgis, Iversen, Larsen & Reynolds (1993) found in 
their study of copper Tutton's salt, that unbiased neutron 
parameters can be vital in electron-density modelling us- 
ing the multipole technique. In order to extract the opti- 
mum amount of electronic information about the system, 
presumably unbiased thermal parameters were therefore 
first obtained by least-squares refinement of the neutron 
diffraction data of Larsen, Brown, Lehman & Merisalo 
(11982) (see Appendix). These thermal parameters were 
used as fixed values in a second model in the MRM 
analysis. Final parameters for model 2 are also given in 
Table 3. 

Static deformation maps of model 2 are given in Fig. 
4. In the region around the bipyramidal space they show 
an excess of charge relative to a procrystal consisting 
of spherical Be atoms. Topological analysis of the static 
density reveals that model 2 contains NNM1 but not 
NNM2 found in the MEM case. The bond critical point, 
BOND1, and the cage critical point, CAGE, are also 
present. No bond critical point is found between beryl- 
lium and NNM1 of adjacent (001) layers. Instead a (3,3) 
cage critical point is found between them. However, for 
this point two eigenvalues are very small (Ai = A2 = 
0.06). It will only take a minor change in the EDD 
to change the topology of this point and make it a 
(3,-1) bond critical point like BOND2 of the MEM case. 
Several spurious ring critical points are indicated but 
none in special positions. The critical points are listed 
in Table 4. Maps of the gradient paths corresponding to 
the static EDD of model 2 are shown in Fig. 5, which 
appears rather different from Fig. 2, the gradient maps 
of the MEM EDD. The volumes around the Be atoms 
though are quite similar. The absence of NNM2 in the 
static MRM EDD is matched by pronounced differences 
between the gradient paths in the interatomic region. 

In order to test the resolution which is attainable 
without use of unbiased neutron parameters, we have 
also performed a topological analysis of the static density 
corresponding to model 1. It is satisfying to observe 
that model 1 contains the NNMI. It also contains both 
of the (3,-1) bond critical points between beryllium 
and NNM1 found with the MEM. Model 1 indicates 
additional (3,-1) points plus another NNM, which are all 
in general positions and seem to be spurious. The density 
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Table 4. Values at selected critical points in the EDD 
obtained with the MRM using model 2 

Table entries correspond to the entries of Table 1. 

(3,3) 
( 3 , -  3) (3 ,--  1 ) C A G E  
NNMI BONDI (BOND2)  

x 2/3 0.481 1/3 
y 1/3 0.519 2/3 
z 1/4 I/4 -0 .050 
pos d h f 
mult 2 6 4 
p 0.382 0.350 0.288 
V2p -0.77 0.62 1.64 
21 -0 .24  -0.65 0.06 
22 -0 .29 -0 .40  0.06 
23 -0 .24  1.66 1.99 
e 0.63 
RI 0.59 1.05 

Be Be 
R2 0.73 0.74 

NNM NNM 

(3,3) 
C A G E  

0 
0 

1/4 
b 
2 
0.232 
0.91 
0.44 
0.44 
0.03 

. ! , . / "  

. . . . . . .  

• t \ i , ! . . .  

. ~::-. ~..~H ~ i 
# 

l "  x \  I ' " .  - i I ~x ; ' 

i Xl I \ k.. 

l t 
x t \ J 

(a) 

distribution of model 1 is more noisy than what is found 
for model 2. The general topology of  the MRM models, 
however, resembles what is found with the MEM. The 
most important difference in the topology between the 
MEM and the MRM model is the presence of NNM2 in 
the MEM density. Compared with the MEM the MRM 
has resulted in the more noisy EDD, and thus for the 
beryllium structure it seems that extremely fine details 
in the EDD are better revealed by the MEM. 

Discussion 

The critical bond network of bulk beryllium shown in 
Fig. 3 is complex and suggests some special properties 
of  the bonding in metallic Be. It is interesting to com- 
pare the characteristics of  the critical points with those 
found in lithium. In lithium bonds between the metal 
atoms and the NNM can be characterized as closed- 
shell interactions (V2p >0). This is also the case for 
the two bond critical points between NNM1 and Be. 

(a) 

. . . .  

. . . . .  

. . . . . . . . . .  

1101 
(b) 

Fig. 4. Static deformation densities for the multipole least-squares 
analysis based on model 2. (a) and (b) are the (001) and ( l l 0 )  
planes, respectively. Contour interval = 0.02 e A -3. The static density 
is calculated from a 93 unit-ceU model density. 

c .~ll/J I ~ .... 

----- • ~ ~_~_.. 

[110] 

(b) 
Fig. 5. Gradient paths of the electron-density distribution obtained from 

the multipole analysis. (a) and (b) are the (001) and (I10) planes, 
respectively. 
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However, both the (3,-1) point between beryllium and 
NNM2 and the (3,-1) point between the two NNM 
have negative Laplacians. These bonds can therefore be 
characterized as shared interactions. A negative value 
of the Laplacian indicates a surplus of potential energy 
density relative to kinetic energy density. Regions of 
negative Laplacians are also found at the position of the 
beryllium nuclei and at the two NNM. This indicates 
that the two NNM sit in positions that are optimally 
stabilized by a large number of surrounding beryllium 
nuclei. NNM1 has three beryllium neighbours at short 
distance and two more at longer distances limiting 
the bipyramidai space. Part of the bonding in metallic 
beryllium may therefore be viewed as a five-centre bond. 
NNM2 has six beryllium nuclei as neighbours but at a 
somewhat larger distance. 

The topological analysis reveals a picture that dif- 
fers from the simple qualitative picture obtained by 
Takata, Kubota & Sakata (1993) from synchrotron pow- 
der diffraction data. Based on recognition of the regions 
of maximally accumulated charge they concluded that 
the charge in the bipyramidal space binds the atoms 
within one layer but that there is no overlap of electrons 
between planes. In this way they argued that beryl- 
lium has an electronic layer structure. The critical-point 
network in Fig. 3 opposes this view of the beryllium 
structure. The topology suggests inter-layer interactions. 
The layer atoms are bound to each other through the 
NNM 1. The existence of NNM2 spoils the layer picture. 
With the NNM2 present we establish the inter-meshed 
network of negatively charged pseudo-atoms like that 
proposed by Cao, Gatti, Macdougall & Bader (1987) for 
the group I metals. Bader (1991) argues that the charge 
in pseudo-atoms should be mobile under the influence 
of an electric field and primarily responsible for the 
conducting properties of the metal. The structure in Fig. 
3 has a multitude of zigzag channels formed by the 
pseudo-atom network in which conduction can occur. 

The topological network may be able to explain 
some of the abnormal surface effects that have been 
observed for Be. Surface reorganization has attracted 
considerable theoretical and experimental interest in 
recent years due to surface critical, modern technology. 
At the surface the atomic positions that minimize the free 
energy for the bulk structure do not necessarily minimize 
the free energy at the surface. In some cases the surface 
reconstructs, but in less extreme cases the lattice near the 
surface is relaxed. The interesting point is that beryllium 
has an abnormally large expansion of the lattice at 
the surface. This is opposite to the majority of close- 
packed crystal structures which show contractions or at 
the most small expansions. This abnormal behaviour is 
expected to lead to interesting physical and chemical 
properties of the beryllium surface. Boettger & Trickey 
(1985) reported density functional calculations showing 
that bilayers of beryllium expand the c/a ratio to 1.69 
compared with 1.56 in the bulk. The increase of the c/a 

Table 5. Atomic charges in spherical volumes calculated 
using results of the MEM with different prior distribu- 

tions and weighting schemes 

Column 5 corresponds to the thermally smeared free atom Be starting 
distribution used as prior distribution in the MEM calculat ion with non-  

uniform prior. 

Thermal ly  
Radius of Uniform Non-uniform Non-uni form smeared free 

spherical°  prior prior prior atom Be 
volume (A) w = l/cr 2 w = I/~r 2 w = 1/(H2crf distribution 
Be, R = 0.69 2.32 2.45 2.40 3.04 
Be, R = 0.90 2.88 2.98 2.93 3.36 
NNMI, R = 0.63 0.48 0.36 0.41 0.26 
NNM2, R = 0.24 0.02 0.02 0.01 0.01 
NNM2, R = 0.69 0.40 0.43 0.42 0.27 

ratio is due to both in-layer contraction and inter-layer 
expansion. Davis, Hannon, Ray & Plummer (1992) have 
recently determined surface inter-layer distances from 
LEED spectra of the (001) surface. They report that the 
surface layers have an abnormally large expansion of 
5.8%. The abnormal effects at the beryllium surface fits 
into our topological picture of the bulk with important 
inter-layer interactions. When the surface is created, 
the network comprising the pseudo-atoms is disturbed, 
leading to a weakening of the inter-layer bonding near 
the surface which in turn results in the expansion of the 
inter-layer distance. The electrons that in the bulk make 
up the inter-layer overlap may at the surface reorganize 
into the plane resulting in the in-plane contraction. It 
is notable that beryllium has a c/a less than the ideal 
1.63, in support of the idea of inter-layer interactions in 
Be. If these observations are correct then it will have 
some implications for h.c.p, metals with c/a > 1.63. 
They should show weaker inter-layer interactions in the 
bulk. We are presently carrying out a similar topological 
analysis for magnesium to explore these ideas. 

The topological analysis indicates that the volume 
associated with the Be atom can be quite well ap- 
proximated by a spherical volume. Beryllium has three- 
bond critical points at distances 0.69, 0.70 and 0.90/~, 
respectively. Integration over a sphere with such radii 
reveals the charges given in Table 5. Table 5 shows 
the results obtained with the MEM, starting with both 
a uniform and a non-uniform prior. Furthermore, the 
charges corresponding to the thermally smeared beryl- 
lium density which was used as a starting distribution 
in the non-uniform MEM procedure, are given. It is 
clear that charge has moved into the bipyramidal region 
during the optimization and the numbers suggest that the 
Be atom in the metal is stripped of most of its valence 
electrons and consists primarily of an ionic core. The 
valence electron density is primarily found near the non- 
nuclear maxima. NNM1 has neighbouring bond critical 
points at 0.63, 1.09 and 1.36,a,. Results obtained by 
integration over a sphere of radius 0.63/~, are shown in 
Table 5. This lower estimate is probably a considerable 
underestimate of the NNM1 charge, because the NNM1 
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basin is highly non-spherical. The average density in the 
unit cell outside the Be atoms (spheres of radii 0.9 A) is 
0.182 e/~-3. A spherical NNM 1 of radius 0.63 A has an 
average density of 0.356 e A-3. NNM2 has neighbouring 
(3,-1) points at 0.24 and 0.69/~ and integration results 
are also shown in Table 5. The average density for an 
NNM2 sphere of radius 0 .24A is 0.218 e A -3. 

Concluding remarks 

In the combined process of deriving the EDD by the 
MEM and subsequent topological analysis a detailed 
description of the beryllium structure has been achieved 
without using any model. The proposed critical-point 
network should be interpreted with care, keeping in mind 
the uncertainties in the present procedures. However, the 
network gives some explanation for the well established 
abnormal behaviour of the beryllium surface. 

The MEM results were compared with results from 
the MRM. The MRM is a very well established tech- 
nique and for molecular crystals it is probably at the 
present stage superior to the MEM. However, the MRM 
formalism lacks a measure besides the ~2 statistic for 
judging the validity of different models. Some kind of 
prior distribution should be incorporated to measure the 
entropy of the derived distribution. The EDD's obtained 
with the MRM confirm the general topological features 
from the MEM, but the fine details are less clear. It is 
satisfying that both methods independently reveal that 
non-nuclear maxima exist in the EDD of the beryllium 
h.c.p, structure. 

The problem with the MEM is that it is computa- 
tionally heavy. In the present form it uses a discrete 
density which creates some numerical difficulties and 
there are some problems in the method that are still 
unresolved. The problem with the stopping criteria has to 
be further addressed to make the method consistent and 
the effects of the different weighting schemes and prior 
densities must be better understood. Perhaps additional 
constraints should be included when we are stretching 
the experimental resolution to the limit. There may be, 
for example, correlations between neighbouring pixels as 
we are dealing with a system of Fermi ions. A limitation 
in the present method is that it demands use of data 
virtually free of systematic errors, which are difficult 
to obtain except in a few specific cases like beryllium. 
However, the MEM is a powerful method which is 
model independent, and the present study shows that 
inclusion of the prior distribution can make a difference. 

The authors wish to thank Professor N. K. Hansen 
for his kind assistance with the MRM calculations. This 
work has been partly supported by the Danish Natural 
Science Research Council, the American National Insti- 
tutes of Health and by the Ministry of Education, Science 
and Culture of Japan. 

Table 6. Results of least-squares refinement of neutron 
data 

Parameter Value 
No. of observations 132 
Scale 55.4 ( I ) 
U ~, (,~-z) 0.(X)587 (4) 
U3~ (,~-2) 0.00536 (4) 
C ~'~ (,~-3) 0.00227 (36) 
DllJl (,~-4) -0.00011 (4) 
D3333 (~ .4) -0.(X~)20 (5) 
D~I3~ (~-4) -0.00069 (13) 
e (isotropic extinction) 0.009 (2) 
R~- 0.0075 
R,,F 0.011)3 
Rt. -2 0.0129 
Rw~ 2 0.0206 
Gof 0.694 

APPENDIX 

Results of least-squares refinement of neutron data (see 
Table 6) 

The refinement of the neutron data (Larsen, Brown, 
Lehman & Merisalo, 1982) was done with the pro- 
gram MOLLY (Hansen & Coppens, 1978) employing 
the Gram Charlier expansion up to fourth order of 
the harmonic displacement factor. In accordance with 
Larsen, Brown, Lehman & Merisalo (1982) and Takata, 
Sakata, Kumazawa, Larsen & Iversen (1994), we find 
both significant third- and fourth-order anharmonicity. It 
is of interest to compare the values of the thermal param- 
eters obtained from the neutron data with the parameters 
obtained from the X-ray data (model 1). Especially the 
important third-order parameter C TM is more significant 
in the neutron study. This parameter correlates with 
the third-order multipole p33+ in the X-ray refinements. 
The p33÷ multipole is primarily responsible for moving 
charge out into the bipyramidal region. A significant 
value of C TM indicates that the atomic potentials are 
softened towards the side which is part of the rectangular 
configuration of the neighbouring atoms and hardened 
against the direction of the bipyramidal space. The 
third-order anharmonicity and the electron deformation 
thus have opposite effects. When the unbiased neutron 
parameters are used the value of p33+ increases from 
0.073 to 0.152. The result of this is seen in the static 
deformation maps of model 2, where a large peak at the 
position of NNM1 indicates that the beryllium structure 
contains more charge in this region than a procrystal 
consisting of free Be atoms placed at their unit-cell 
positions. 
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